skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nair, Vishnu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sighted players gain spatial awareness within video games through sight and spatial awareness tools (SATs) such as minimaps. Visually impaired players (VIPs), however, must often rely heavily on SATs to gain spatial awareness, especially in complex environments where using rich ambient sound design alone may be insufficient. Researchers have developed many SATs for facilitating spatial awareness within VIPs. Yet this abundance disguises a gap in our understanding about how exactly these approaches assist VIPs in gaining spatial awareness and what their relative merits and limitations are. To address this, we investigate four leading approaches to facilitating spatial awareness for VIPs within a 3D video game context. Our findings uncover new insights into SATs for VIPs within video games, including that VIPs value position and orientation information the most from an SAT; that none of the approaches we investigated convey position and orientation effectively; and that VIPs highly value the ability to customize SATs. 
    more » « less
  2. Video games created for visually impaired players (VIPs) remain inequivalent to those created for sighted players. Sighted players use minimaps within games to learn how their surrounding environment is laid out, but there is no effective analogue to the minimap for visually impaired players. A major accessibility challenge is to create a generalized, acoustic (non-visual) version of the minimap for VIPs. To address this challenge, we develop and investigate four acoustic minimap techniques which represent a breadth of ideas for how an acoustic minimap might work: a companion smartphone app, echolocation, a directional scanner, and a simple menu. Each technique is designed to communicate information about the area around the player within a game world, providing functionality analogous to a visual minimap but in acoustic form. We close by describing a user study that we are performing with these techniques to investigate the factors that are important in the design of acoustic minimap tools. 
    more » « less
  3. null (Ed.)
    This paper describes the interface and testing of an indoor navigation app - ASSIST - that guides blind & visually impaired (BVI) individuals through an indoor environment with high accuracy while augmenting their understanding of the surrounding environment. ASSIST features personalized interfaces by considering the unique experiences that BVI individuals have in indoor wayfinding and offers multiple levels of multimodal feedback. After an overview of the technical approach and implementation of the first prototype of the ASSIST system, the results of two pilot studies performed with BVI individuals are presented – a performance study to collect data on mobility (walking speed, collisions, and navigation errors) while using the app, and a usability study to collect user evaluation data on the perceived helpfulness, safety, ease-of-use, and overall experience while using the app. Our studies show that ASSIST is useful in providing users with navigational guidance, improving their efficiency and (more significantly) their safety and accuracy in wayfinding indoors. Findings and user feed-back from the studies confirm some of the previous results, while also providing some new insights into the creation of such an app, including the use of customized user interfaces and expanding the types of information provided. 
    more » « less
  4. Large transportation hubs are difficult to navigate, especially for people with special needs such as those with visual impairment, Autism spectrum disorder (ASD), or simply those with navigation challenges. The primary objective of this research is to design and develop a novel cyber-physical infrastructure that can effectively and efficiently transform existing transportation hubs into smart facilities capable of providing better location-aware services. We investigated the integration of a number of Internet of Things (IoT) elements, including video analytics, Bluetooth beacons, mobile computing, and facility semantic models, to provide reliable indoor navigation services to people with special needs, yet requiring minimum infrastructure changes. Our pilot tests with people with special needs at a multi-floor building in New York City has demonstrated the effectiveness of our proposed framework. 
    more » « less